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A Continuum Theory of Crack Shielding in Ceramics

M. Ortiz

Division of Engineering, Brown University, RI 02912, USA

Abstract - A phenomenological constitutive model is proposed which aims at
describing the overall effect of microfracture in ceramics. Based on this model,
the asymptotic stress, strain and displacement fields at the tip of a stationary
macroscopic crack are determined in closed form. The near-tip stress-intensity
factor is computed and observed to be significantly smaller than the applied

4, stress-intensity factor even for moderate amounts of damage.
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1 Introduction

Certain classes of ceramics are known to undergo extensive microcracking confined to a

process zone surrounding macrocrack tips [1-3]. Under these conditions, the processes at the

crack tip are screened from the remote loads by the intervening microcracks and a fracture

toughness enhancement results [4]. Microcracks develop at grain boundary facets mainly as a

result of residual stresses generated during cooling and of applied tensile stresses [5]. The net

- effect of the microcracks is to render the material more compliant. Under increasing loads, the

microcracks already present in the material remain confined to their respective facets and their

size essentially unaltered. Thus, further elastic degradation comes about as a result of increasing

microcrack density and not microcrack growth. Eventually, the number of available nucleation

sites which are favorably oriented with respect to the applied tensile loads is exhausted and a

saturation stage is reached in which the material does not undergo further damage.

A first attempt at quantifying the crack shielding effect [6] has relied on computer simula-

tion. However, an analytical treatment of the problem has proven elusive in part due to lack of

adequate material characterization. In this study it is assumed that the length scale over which

the singular fields dominate is large compared with the characteristic microcrack size and the
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mean distance between the microcracks so that an asymptotic analysis can be based on the

effective overall properties of the continuum. Ideally, one would like to have a description of

the effective behavior based on rnicromechanics and a detailed knowledge of its dependence on

relevant micromechanical parameters such as grain size. However, this entails the determina-

tion of the aggregate effect of dense populations of strongly interacting microcracks, possibly

with preferred orientations, distributed over a three-dimensional heterogeneous elastic medium.

Even under strong simplifying assumptions, this problem poses considerable difficulties [7,8].

Thus, to make progress one has to resort to phenomenological models. In Section 2, one such

model is proposed which aims at describing the effective behavior of a material undergoing

progressive distributed damage and exhibiting a saturation stage. The possibility of a strong

damage-induced elastic anisotropy is taken into consideration. Some of the ideas involved have

been taken from constitutive models proposed for other progressively fracturing materials such

as concrete [9].

It Section 3 the near-tip singular fields for a stationary crack are determined in closed form.

Then, Rice's J-integral [10] is used to relate the stress-intensity factor at the crack tip to the

amplitude of the remote K-field. It is found that small amounts of damage can result in a

substantial reduction of the stress-intensity factor and thereby bring about a toughening of the

material. This situation is in sharp contrast to transformation toughening which only comes

into effect for a growing crack [111.

2 Effective Constitutive Behavior of Progressively Fracturing Materials

A phenomenological constitutive model is presented below which aims at describing the

overall effect of microfracture in ceramics. In this work, processes resulting in permanent strains

as well as rate effects are neglected. The model is predicated upon the following assumptions.

Stresses and strains are assumed to be linearly related according to

f,-- Ctklaki (1)

where the elastic compliances Cj1kg are regarded as internal variables which evolve as a result

of damage processes taking place at a microstructural level. A threshold is postulated below

which no further damage can occur. For the class of materials under consideration, the onset
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of damage is assumed to occur when the maximum tensile stress a reaches a critical value

a,> 0, i. e.

(, - a, = 0 (2)

The direction of incremental damage is given by a damage rule

C,jk1 = An14 Y nk n (3)

where n, v/ri4i = 1, is the direction of maximum tensile stress and the multiplier A can be

regarded as an effective added flexibility due to damage. Implicit in (3) is the assumption

that the newly nucleated microcracks tend to be preferentially oriented normal to the direction

of maximum tensile stress and thus most loss of stiffness occurs in that direction. Similar

ideas were used in [14 to estimate the macroscopic steady creep-rate of a material exhibiting

power-law creep and simultaneously undergoing creep-constrained grain boundary cavitation.

The evolution of the critical stress a, is assumed to be governed by a damage rule of the

type

",, - h(o-,)A (4)

for some modulus h(a,). In this simple model the dependence of h on a, can be determined

from the uniaxial tension stress-strain curve alone. Finally, the damage and loading-unloading

criteria can be expressed in Kuhn-Tucker form as the requirement that the constraints

0: € 0, > 0, ' 0 (5)

be simultaneously satisfied at all times.

It is interesting to note that the above constitutive model shares a common structure

with other rate-independent theories such as classical plasticity. In this latter case, a principal

objective of the theory is to predict the evolution of the plastic strains while in the case at

hand interest is focused on the evolution of the effective elastic moduli. In spite of these

similarities, certain aspects of the behavior of materials undergoing microcracking do not have
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a counterpart in plasticity. The effect of closure of microcracks under load reversal falls within

that category. By this mechanism microcracks can become inactive and cease to contribute to

the flexibility of the material. Consideration of this effect requires to add further structure to

the model. Microcrack closure can be modelled within a phenomenological theory as a unilateral

constraint which requires that the deformation contributed by the microcracks be always tensile

in all directions [9]. In the present study attention is cLnfined to monotonic loading processes

for which microcrack closure is of no concern.

For the purpose of the asymptotic analysis that follows it proves more convenient to employ

a deformation type constitutive theory rather than the incremental model introduced above.

A deformation theory of damage can be readily obtained by integrating the incremental con-

stitutive equations along proportional stress paths. This results in the following stress-strain

relation

=. c?,.k, +\(al)N r nknT)uki (6)

where Cjk are the isotropic elastic moduli of the uncracked material, n is the direction of

maximum tensile stress and the function A(a, ) can be determined directly from the uniaxial

tension test. A typical uniaxial tension stress-strain curve is shown in Fig. 1, [5]. It is seen

that the material initially exhibits an elastic domain after which damage starts to accumulate.

Eventually, a saturation stage is reached wherein no further damage takes places. In this

saturation stage eq. (6) simplifies to

. c,. = (Ci}k, +A, Nnft4)k, = Cijlakl +kalotn (7)

where A. is a constant of value

q
A 1 1 (8)

"E, E.

Here, E is the initial Young's modulus of the material and E, is the slope of the uniaxial

tension stress-strain curve in the saturation range.

The stress-strain relation (6) has a hyperelastic structure
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(9)

where the complementary energy potential X(u) takes the form

x('=I 1 0i,:, + f(O, ) (10)

The functions f(a, ) and A (a,) are related by f = A. In the saturation stage eq. (6) reduces to

(7) and f(o ) to Ao2/2, which renders the complementary energy potential (10) a homogeneous

function of degree two of the stress tensor. Therefore, the strain energy potential W(C) is also

a homogeneous function of degree two and satisfies the identity

W(c) = x u) = I ,,,, when j - (11

i. e., the strain and complementary energy potentials take the same numerical value when

evaluated at stresses and strains which satisfy the stress-strain relations (9).

3 Asymptotic Fields for a Stationary Crack

Throughout this work it is assumed that the region around the crack tip to which micro-

cracking is confined is small compared with the length of the crack but orders of magnitude

larger than the characteristic size of the microcracks and their mean separation. Under the first

condition an asymptotic problem can be formulated for a semi-infinite crack as shown in Fig.

2. The second condition is needed for the constitutive model presented above to apply. In this

paper attention is confined to plane strain conditions and Mode I loading, i. e., applied loads

which result in stress fields which are symmetric with respect to the plane of the crack.

Three well-differentiated regions surrounding the crack tip can be identified, Fig. 2. In

the innermc';t region the strains are large enough so that the material can be assumed to be

in the saturation stage. On the other hand, at points far away from the crack tip the material

behavior is linear isotropic elastic and the state of stress is given by [10]

= (12)
at' ~ ~ a (0)) 2r

where Ko, is the remote stress-intensity factor and the universal angular distributions C5,.(0)

for a linear isotropic elastic material are given by [10]

5
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( (5/4)cos(/2) - (1/4)cos(3 / 2){ ,"" (0) = (3/4)cos(0/2) + (1/4)cos(30/2) (13)
a J (0) (1/4)sin(e/2) + (1/4)sin(30/2)

The value of K,, depends upon the particular geometry of the cracked specimen and represents

the influence of the applied loading. In between the inner and outer fields lies a transition zone

in which the material is partially saturated.

The behavior of the material surrounding the crak tip is assumed to be described by the

stress-strain law (7). Since these relations derive from a complementary energy potential which

is homogeneous of degree two, a classical argument [10] shows that the leading term in the

asymptotic expansion of the stress field has to be of the form

b qj Kt

u~(29 \,m i 9 (14)

where K is the local stress-intensity factor of the near-tip fields and the angular distributions

e ,3 (0) are to be determined. In general K is different from K,, because the crack tip is shielded

from the remote loads by the intervening microcracks. Assuming that crack growth is controlled

by the value of K it becomes of primary interest to determine the relation between K and K,.

In view of the fact that the constitutiv e behavior of the material surrounding the crack tip

is nonlinear and strongly anisotropic one would expect singular stress fields which substantially

depart from the linear isotropic solution. It is shown next that this is not the case. In fact, the

linear isotropic stress field provides the exact asymptotic solution of the problem, i. e.

Under certain circumstances, a similar situation is encountered in materials exhibiting linear

creep and grain boundary cavitation [14). On the basis of this observation, Hutchinson [14]

anticipated the result stated above, namely, that constitutive relation (7) implies the same

angular di'tribution of stresses as in the linear elastic solution.

To prove eq. (15) we start by noting that the stress field (14), (15) satisfies equilibrium
and traction-free boundary conditions on the crack faces. Thus, it only remains to be shown

that the corresponding strains satisfy compatibility. With reference to Fig. 2, the direction of

maximum tensile stress is computed to be

as., 6



nr/4- 0/4, 0 < 0 < 7r; (16)n=(cos, sina), -0/4 -ir<0<0

Thus, the angle a made by n and the radial direction varies linearly with the polar angle 0

from avalue ofa = 45 ° at 0 = 0 toa =0' on the crack face0 = 7r. The vector ncan be

regarded as giving an indication of the preferred orientation of the microcracks. In this light, it

is interesting to note that for 0 = 0 one has i,, = 45,, and 1,, = 0. This would appear to render

a indeterminate on the plane of the crack. However, this indeterminacy can be resolved by

computing the limiting values of a as the plane 0 = 0 is approached from above and below. This

operation yields two values of a = ± 450, respectively. Thus, the model predicts two families of

perpendicular microcracks at 0 = 0 symmetrically distributed with respect to the plane of the

crack.

Substituting (16) into (6) the asymptotic strain field is computed to be

c". (r, 0) Kt (5/4- 2v, )cos(O/2) - (1/4)cos(30/2) I

_____.,K (,2 1_ ) { (l i( 2)/ } ,_<0S2 (3/4- 2v)cos(02) + (1/4)cos(30/2)YTV (r,2G0 (l/2)sin(0/2) + (l/2)sin(39/2)

~Kt /I +\ sin(0/2)) /2 0 < 0<

A(Cos 2 +-2sinOj (1- sin(6/2)) /2• cos(0/2)
(17)

4 where E., v. and G,, = E,/2(1 + v.) are the initial Young's modulus, Poisson's ratio and shear

%. modulus of the uftcracked material. It is noted that the first term is the isotropic linear elastic

solution corresponding to a stress-intensity factor K,. The second term respresents the effect of

damage and vanishes identically for A,. = 0, i. e., E,. = E. The strains in the lower half plane

- r < 0 < 0 are obtained from the symmetry conditions

q,(r,-0) = c,,(r, 0), co(r,-0) = coo (r, 0), ,r,-0) = - ,0)(r,0) (18)

The computed angular distributions of the strain components are shown in Fig. 3 as a function

of the material parameters involved. A noteworthy feature of the solution is that the shearing

strain ',o exhibits a jump accross the plane of the crack.

Lengthy but straightforward algebra shows that the strain field (17) identically satisfies

7
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the compatibility equation. Hence, eqs. (14), (15) do indeed provide a closed form asymptotic

solution of the problem. The displacement field can be computed from the strain-displacemen t

relations to obtain

U, (r, 6) K, F T 2,, - 1)cos(0/2) - cos(30/2) +~
ir,0) 4G V 2r{ (2c,, + 1)sin(}/2) + Bin (36/2) +[ o < _< ( 1 9 )

! (cos(0 12) + (1/2)sinO) (I + sin(0/2))
rV cos6- sin(0/2)- sin3 (0/2)- 1 f

where r, = 3 - 4v,,. The displacements in the lower half plane follow from the symmetry

conditions

U, (r,-e) = U,(r,0), 4,(r,-0) -k,(r,9) (20)

Of parucular interest is the crack opening profile

I" (r) = - , (r, lr) + V, (r, -7r) -- 8Zt E. + Ao r (1Eo A f (21)

As can be seen, the opening profile is parabolic as in the linear elastic solution.

The asymptotic analysis presented above has been based on the deformation theory of

damage given in Section 2. However, since the stress field about the crack tip is identical

to the stress field in the outer undamaged region except for an amplitude factor it can be

concluded that the stress paths at all material points are nearly proportional and the solution

given above is consistent with the incremental constitutive model as well. A similar situation

was encountered by Hutchinson [12] and Rice and Rosengren [13] who based their analysis on a

deformation theory of plasticity to find a posteriori that their solution satisfies the incremental

constitutive equations as well.

4 Crack Tip Stress-Intensity Factor: Application of the J-Integral

To have a complete asymptotic solution of the problem under consideration is remains to

determine the value of the crack tip stress-intensity factor Kt as a function of the amplitude

Ko, of the applied K-field. This relation follows simply from an application of the J-integral

of Rice [10]. It has been shown above that under monotonic loading the stress path at all

points is nearly proportional and the response of the material is indistinguishable from that of

8
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a small strain, nonlinear elastic solid with complementary energy potential (10). Under these

conditions, the formalism of the J-integral applies. Let us recall that

J If ['(). - 0,,.1 ids (22)

Here, rn signifies the outer normal to the contour r encircling the crack tip. If the contour in

chosen to lie entirely within the remote field J reduces to the classical expression

jM (23).
a.E.

-a -': For a contour shrunk down to the crack tip (22) can be evaluated from eqs. (14), (15) and (19).

01 For the particular material model under consideration the strain and complementary energy

potentials coincide in numerical value and W(c) in (22) can be replaced by X(61) as computed

from (7), (14) and (15). A lengthy but straightforward computation yields

J, 1-A.K (24)

where the numerical constant 0 takes the value 8 = 1.0942. The path-independence of J

necessitates

-= J. (25)

'V, from where one finds

Kt1 (26)

1_ I ±-[ (E0 / E, - 1)

% The dependence of K/K on Eo/E, is shown in Fig. 4. A substantial reduction in K is

observed even for moderate deviations from elastic behavior.

5 Discussion

The analysis presented above has been based on a model of damage in which permanent

strains and rate effects are assumed to be negligible. The model incorporates some of the

complexities that are encountered in most progressively fracturing materials such as a strong

9
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damage-induced elastic anisotropy. However, the constitutive framework is simple enough that

a closed form analytical solution for the asymptotic problem can be obtained.

The computed results are indicative of a significant reduction in the crack tip stress-in tensity

factor from the remote K. Unfortunately, the net toughness enhancement cannot be expected

to be as substantial as Fig. 4 would tend to suggest due to the fact that the microcracks created

.@ ahead of the main crack degrade the crack extension resistance of the material [4]. The main

rnicrostructural mechanism underlying this latter effect is nicrocrack coalescence, a process

which is poorly understood at present. Thus, it would appear that a detailed understanding of

the toughness properties of ceramics will inevitably require further experimental and analytical

research.
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Figure Captions

Fig. 1. Uniaxial tension stress-strain curve showing an initial elastic range and a saturation

stage.

Fig. 2. Small scale microcracking problem for stationary crack.

Fig. 3. Angular variations of the near-tip strain field (v, = 0.25).

Fig. 4. Near-tip stress-in tensity factor as a function of the extent of elastic degradation

(v = 0.25).
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